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as a function on X X I, is continuous. Because the determinant function is
also continuous, that same k X k submatrix must be nonsingular for all
points (x, ¢) in a neighborhood of (x,, 0) as claimed.

The proof of class (c) is virtually identical. For (d), recall that transversality
with respect to Z may be locally translated into a submersion condition, so
the proof of (d) is quite similar.

For (e), we need now only show that if f,, is one-to-one, so is f; if ¢ is
small enough. This proof is a relative of Exercise 10, Section 3. Define a
smooth map G: X X I — Y X I by G(x, t) = (f(x),t). Then if (e) is false,
there is a sequence ¢; — 0 and distinct points x;, y; € X such that G(x,,¢;) =
G(y;, t;). As X is compact, we may pass to a subsequence to obtain conver-
gence x; — X,, V; — Yo. Then

G(xo,0) = lim G(x,, t,) = lim G(y;, t:) = G(yo, 0).

But G(x,, 0) = fo(x,) and G(y,, 0) = f,(y,), soif f, isinjective, x, must equal
¥o- Now, locally, we may work in Euclidean space. The matrix of dG,,,, is
just

where the numbers a; are not of interest. Since d(f,),, is injective, its matrix
must have k independent rows. Thus the matrix of dG,, o has kK + 1 in-
dependent rows, so dG,, ,, must be an injective linear map. Consequently,
G is animmersion around (x,, 0) and thus must be one-to-one on some neigh-
borhood of (x,, 0). But for large i, both (x,¢;) and (y;, ¢,) belong to this
neighborhood, a contradiction.

Finally, we leave (f) for Exercise 8. Q.E.D.

EXERCISES

@ Suppose that f,,f,: X — Y are homotopic. Show that there exists a
homotopy F: X X I — Y such that F(x, 1) = fo(x) for all ¢ € [0, H
and F(x, t) = f,(x) for all ¢ € [3, 1]. [HINT: Find a smooth function
p:R — Rsuchthat p(r) =0if ¢t < 1, p(f) =1 if t > 3. Now let F be
any homotopy and set F(x, ) = F(x, p(t)).]

@ Prove that homotopy is an equivalence relation: if f ~ g and g ~ A,
then f ~ h. [HINT: To join the homotopies together, you need Exercise
1. Why?]
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*3.

CHAPTER | MANIFOLDS AND SMOOTH MAPS

Show that every connected manifold X is arcwise connected: given any
two points x,, X; € X, there exists a smooth curve f: /— X with f(0)
= Xy, f(1) = x,. [HINT: Use Exercise 2 to show that the relation “x,
and x, can be joined by a smooth curve” is an equivalence relation on
X, and check that the equivalence classes are open.]

A manifold X is contractible if its identity map is homotopic to some

constant map X — {x}, x being a point of X. Check that if X is contract-
ible, then all maps of an arbitrary manifold Y into X are homotopic.
(And conversely.)

Show that R* is contractible.

A manifold X is simply connected if it is connected and if every map of
the circle S! into X is homotopic to a constant. Check that all contract-
ible spaces are simply connected, but convince yourself that the converse
is false. (Soon we shall develop tools that easily prove the converse
false.)

Show that the antipodal map x — —x of S* — S* is homotopic to the
identity if k is odd. HINT: Start off with kK = 1 by using the linear maps
defined by

(cos mt —sin 7zt>.
sin 7t cos 7t

Prove that diffeomorphisms constitute a stable class of mappings of
compact manifolds; that is, prove part (f) of the Stability Theorem.
[HiNT: Reduce to the connected case. Then use the fact that local diffeo-
morphisms map open sets into open sets, plus part (¢) of the theorem.]

Prove that the Stability Theorem is false on noncompact domains.
Here’s one counterexample, but find others yourself to understand what
goes wrong. Let p: R — R be a function with p(s) = 1 if|s| < 1, p(s) =
0 if |s| > 2. Define f,: R — R by f(x) = xp(tx). Verify that this is a
counterexample to all six parts of the theorem. [For part (d), use Z =

{0}.]

A deformation of a submanifold Z in Y is a smooth homotopyi,: Z —
Y where i, is the inclusion map Z — Y and each i, is an embedding.
Thus Z, = i(Z) is a smoothly varying submanifold of Y with Z, = Z.
Show that if Z is compact, then any homotopy i, of its inclusion map is
a deformation for small ¢. Give a counterexample in the noncompact
case (other than the triviality where dim Z = dim Y).
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11. We shall have use for a direct generalization of the notion of homotopy.
Suppose that f,: X — Y is a family of smooth maps, indexed by a
parameter s that varies over a subset S in some Euclidean space. We
say that { .} is a smooth family of mappings if the map F: X X §— Y,
defined by F(x, s) = f,(x), is smooth. Check that the Stability Theorem
generalizes immediately to the following: if f, belongs to any of the
classes listed, then there exists an € > 0 such that f belongs to the same
class if | s, — s| < €.

8§87 Sard’s Theorem and Morse Functions

The preimage of a regular value of the smooth map f: X — Yis
a nice submanifold of X. This simple fact has led us to a generalization of the
notion of regularity—namely, transversality—which we hope will be a key to
decipher some of the secrets of the topology of manifolds. But the regularity
condition on values of fis a strong one. Perhaps the condition is so strong that
regular values occur too rarely for our Preimage Theorem to be of much use.
In fact, precisely the opposite is true, as guaranteed by the second deep
theorem to be borrowed from advanced calculus.

Sard’s Theorem. If f: X —> Y is any smooth map of manifolds, then almost
every point in Y is a regular value of f.

The statement may sound vague but that will be rectified. First, we declare
an arbitrary set A in R to have measure zero if it can be covered by a count-
able number of rectangular solids with arbitrary small total volume. Of
course, a rectangular solid in R’ is just a cartesian product of / intervals in
R!, and its volume is the product of the lengths of the / intervals. Thus 4 has
measure zero if, for every € > 0, there exists a countable collection {S,,
S, . . .} of rectangular solids in R/, such that A is contained in the union of
the S, and

}f vol (S,) < €.
=1

The concept of measure zero is extended to manifolds via local parame-
trizations. An arbitrary subset C — Y has measure zero if, for every local
parametrization y of Y, the preimage y~!(C) has measure zero in Euclidean
space. The condition really need not be verified for every parametrization,
for it is not difficult to show that if 4 — R’ has measure zero and g: R’ — R’
is a smooth map, then g(A4) has measure zero. (Proof in Appendix A.) It
follows that C has measure zero, provided that it can be covered by the images
of some collection of local parametrizations y, satsifying the condition that
w_'(C) has measure zero for each o.



